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A B S T R A C T

The validity of the threat status assigned to a species by the International Union for Conservation of Nature's (IUCN)
Red List relies heavily on the accuracy of the geographic range size estimate for that species. Range maps used to assess
threat status often contain large areas of unsuitable habitat, thereby overestimating range and underestimating threat.
In this study, we assessed 18 endemic birds of the Western Ghats to test the accuracy of the geographic range sizes used
by the IUCN for their threat assessment. Using independently reviewed data from the world's largest citizen science
database (eBird) within a species distribution modeling framework, our results show that: (a) geographic ranges have
been vastly overestimated by IUCN for 17 of the 18 endemic bird species; (b) range maps used by IUCN contain large
areas of unsuitable habitat, and (c) ranges estimated in this study suggest provisional uplisting of IUCN threat status for
at least 10 of the 18 species based on area metrics used by the IUCN for threat assessment. Since global range size is an
important parameter for assigning IUCN threat status, citizen science datasets, high resolution and freely available geo-
referenced ecological data, and the latest species distribution modeling techniques should be used to estimate and track
changes in range extent whenever possible. The methods used here to significantly revise range estimates have
important conservation management implications not only for endemic birds in the Western Ghats, but for vertebrate
and invertebrate taxa worldwide.

1. Introduction

As we move into the Anthropocene, habitat loss and climate change are
affecting the distribution of many species at both local and global scales
(Steffen et al., 2007; Sodhi et al., 2012). The rapid pace and broad spatial
extent of habitat loss and the impacts of climate change, make it immensely
difficult to track changes in the distribution of most species. But temporally
concurrent citizen science data from geographically widespread sources and
substantial advances in spatial and statistical techniques provide new
opportunities to accurately estimate contemporary geographic range size,
crucial for species conservation management and planning activities.

Geographic range size (in km2) in the form of Extent of Occurrence
(EOO) is an important criterion (B1) used by the International Union for
Conservation of Nature (IUCN) for measuring extinction risk for all
recognized taxa (IUCN 2016). For example, the level of extinction threat
as determined under Criterion B1 suggest that EOOs of< 20,000
km2,< 5000 km2 and< 100 km2 can lead to an uplisting of threat status
to Vulnerable, Endangered and Critically Endangered, respectively, upon
satisfying other sub-criteria (such as those related to habitat quality, number
of mature individuals, extent of decline in quality of habitat and degree of
fragmentation of habitat among others) (IUCN 2016).

Most often, an EOO is calculated by drawing a minimum convex polygon
(MCP) around a species range map (IUCN 2016). However, the effectiveness
of using the MCP method relies heavily on the accuracy of the species range
map (Ostro et al., 1999). For all birds and most mammal species, EOOs have
thus far been calculated by simply summing the area of all polygons within a
species range map that have been provided to the IUCN by BirdLife
International (BLI) and NatureServe (BirdLife International and
NatureServe, 2016). Recently, Joppa et al. (2016) proposed that the MCP
method should be the standard for future calculations of EOOs of all taxa,
thereby warranting the need for accurate species range maps.

Although widely used for conservation planning, most species range
maps almost always overestimate the actual distribution of a species by
incorporating areas of unsuitable habitat (Hurlbert and White, 2005; Jetz
et al., 2007). For example, for all North American breeding birds, Hurlbert
and White (2005) showed that bird species were detected in only 40.5% of
the range map area. Similarly, Hurlbert and Jetz (2007) showed that up to
two-thirds of the range maps for species in global biodiversity hotspots
might be gross overestimates of where the species are actually distributed,
underscoring the need for more accurate range maps.

Over the past decade, species distribution models (SDMs) have been
shown to be a technically more robust means of accurately predicting
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species distributions (Guisan and Thuiller, 2005; Elith and Leathwick,
2009). They do so, by estimating the relationship between a known location
of a species and the environmental and spatial conditions that are
characteristic of that location (Franklin, 2010). In so doing, SDM techniques
have significantly reduced uncertainty in distribution predictions (Elith
et al., 2006). With the increasing availability of open access high-resolution
land cover maps, environmental variables (e.g. temperature, precipitation),
and species occurrence data from citizen science databases, the application
of SDMs has become even more nuanced of late, and thus more accurate in
estimating species distributions.

The Western Ghats mountain chain (WG) in southwestern India, is a
biodiversity and endemism hotspot that is part of the Western Ghats-Sri
Lanka biodiversity hotspot (Myers et al., 2000). It hosts 26 endemic
bird species with varying IUCN extinction threat levels (Appendix A –
Table 1). The current range maps for several of these endemics are
coterminous with the entire WG mountain range. However, most of the
endemics are evergreen forest and/or high elevation specialists,
habitats types which occupy only a small spatial subset of the WG
(Ali and Ripley, 1983). Therefore, creating the first accurate range
maps for these species, based on detailed observational and ecological
data, will likely influence their IUCN threat status and is thus crucial for
conservation planning and management.

The citizen science project eBird provides us with a database of bird
occurrence covering broad spatial scales (Hochachka et al., 2012; eBird,
2013). Curated eBird species occurrence data can provide the spatially
extensive database needed to produce detailed, ecologically relevant
SDMs that can render an accurate estimate of spatial extent for WG
endemics.

Using eBird data, filtered by regional data reviewers, and freely
available landscape scale environmental predictors incorporated into
an SDM framework, we: (1) model current extent of suitable habitat for
18 of the 26 Western Ghats endemic birds, and (2) quantify the
disparity between ranges estimated by BirdLife International (BLI)
and NatureServe for IUCN and ranges estimated using our SDM
approach. We demonstrate that remotely sensed data and emerging
computational modeling techniques can be used for data rich taxa to
significantly improve the accuracy of range maps used by the IUCN to
assess the threat status of species. We provide robust evidence that
range maps created by BLI and NatureServe for WG include extensive
areas of non-habitat/unsuitable habitat for a majority of endemic bird
species. For data rich species globally, the latest SDM techniques likely
provide a way to realistically assess current extent and track future
changes in geographic distribution.

2. Materials and methods

2.1. Study area

The WG (~1600 km long, highest peak 2695 m a.s.l) is topographically
complex with a strong precipitation gradient. The annual precipitation
varies from over 5000 mm on the west facing slopes and hillcrests to
600 mm on the eastern slopes, which fall in a rain shadow (Gunnell, 1997).
The region harbors a wide variety of habitat types ranging from evergreen
to sub-tropical broadleaf forests to high elevation Shola grasslands (see Roy
et al., 2015). In addition, many areas of the Western Ghats are fragmented
by anthropogenic landscapes such as plantations, orchards, and other
agricultural areas.

2.2. The Western Ghats endemic avifauna

The endemic avifauna of WG varies in habitat preference, from
generalist species in orchards and tea plantations to specialist species
that exist only in high elevation Shola forests and grassland patches.
They also differ in their IUCN threat status, with three species listed as
Endangered, three as Vulnerable, four as near threatened and 11 as
least concern. In addition, three species are listed as not recognized

(which is a category used by BLI for species that have had recent
taxonomic revisions) and two species are listed as Not Evaluated. Of the
26 endemic bird species in WG, we eliminated the five not recognized/
not evaluated species as these species lack BLI range maps for
comparison. The Malabar lark (Galerida malabarica), Malabar barbet
(Psilopogon malabaricus), Nilgiri flowerpecker (Dicaeum concolor) and
Malabar starling (Sturnia blythii) were also left out of this study because
they are often confused with other species, leading to increased error in
citizen science reporting of occurrences. Hence, we considered the 18
remaining endemic bird species, with 2 to 3 representatives in each
threat category (Appendix A - Table 1).

2.3. Occurrence data

In this study, we used presence-only data and no information on “true”
absences of species was recorded. All occurrence records were obtained
from the citizen science database - eBird (eBird, 2013). These records were
filtered by date and only those records that occur within the timeframe from
2000 to 2015 were used in the final analyses. Regional data reviewers who
are familiar with the ecology of each species eliminated imprecise records.
The filtered records were then spatially thinned using the R-based spThin
statistical package (Aiello-Lammens et al., 2015), which removes all
duplicates and reduces the amount of sampling bias by including only
those occurrence records that vary by a particular ‘thinning’ distance from
one another. Thinning distance varied from 100 m to 500 m, based on the
dispersal ability of each species and considering the heterogeneity of the
habitat between two occurrence records for a single species. We performed
100 iterations for each species and arrived at a final list of “thinned”
occurrence points that varied from n=35 (Trochalopteron cachinnans) to
n=780 (Leptocoma minima) (Table 1).

Other thinning approaches, particularly hand-thinning, have been used
elsewhere (Radosavljevic and Anderson, 2014). We tested the efficacy of
hand-thinning in this study, by applying the Boosted Regression Tree
approach, described below, to a hand-thinned dataset for a WG endemic
bird species with a broad geographic distribution and one with a narrow
distribution. The results of these analyses did not alter the conclusions
drawn for these species (see Supplementary data – S2 and Appendix A –
Table 3), and so all subsequent spatial analyses reported here are based on
spThin occurrence data.

2.4. Environmental data

We initially used 27 environmental variables as potential predictors
of a species' distribution (Appendix A - Table 2). We considered these
variables based on the ecology of the species and their ability to
accurately predict likely habitat for that species (Pearson et al., 2007).
Of these 27 predictors, 19 bioclimatic variables were obtained from the
WorldClim dataset at a spatial resolution of ~1 km (http://www.
worldclim.org/bioclim; Hijmans et al., 2005). In addition, we generated
1 km resolution slope and aspect data using digital elevation model
(DEM) data from the WorldClim dataset, which in turn has been
interpolated from Shuttle Radar Topography Mission (SRTM) data.

We used a remotely sensed measure of “greenness” known as the
Enhanced Vegetation Index (EVI). EVI is correlated to net primary
productivity and recent studies suggest that a seasonal estimate of
productivity is better at estimating richness of bird communities than
annual estimates (Hawkins, 2004; see Hurlbert and White, 2005;
Hurlbert and Haskell, 2003). We obtained averaged EVI values from
the Moderate Resolution Imaging Spectroradiometer (MODIS) for the
months of July, December, February and April to account for a gradient
of greenest to driest vegetation. Lastly, we included 35 different land
cover types (e.g. Evergreen Forests, Moist-deciduous forests, Orchards)
from a high-resolution vegetation type map generated by Roy et al.
(2015), using medium resolution IRS-LISS III (Indian Remote Sensing
Satellite - Linear Imaging Self Scanner) images that have an overall
classification accuracy of 90% (http://bis.iirs.gov.in/).
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2.5. Environmental data preparation and exploratory data analysis

For the purpose of modeling suitable habitat, we defined the study area
for each species as the cumulative areas that fall under the species' known
elevational distribution from published accounts. We then processed all
environmental predictors only for areas that satisfied these species-specific
elevation constraints. We created random points within the defined study
area, known as psuedoabsences, to capture available habitat where a species
could be present, though no confirmed presences have been recorded at
those points. We based the number of pseudoabsences generated (n=5000
to 20,000) on that required to capture all possible environmental informa-
tion that exists within the habitats available to a species (Barbet-Massin
et al., 2012).

We eliminated correlated environmental predictors with a Pearson's
Coefficient > 0.7 (Dormann et al., 2013) and retained only those that
had a stronger correlation to the presence records. Additionally, we
retained environmental predictors that are relevant to the ecology of
the species. The final list of environmental variables chosen for further
analyses varied for each species (n= 14 to 21), based on the species'
ecology.

2.6. Species distribution modeling

We used the Boosted Regression Tree (BRT) approach to determine
potential and presently available suitable habitat for each bird. BRTs use
regression approaches rooted in classification and regression tree techniques
(CART) and boosting algorithms to combine predictions from a number of
models. We chose this approach to better parameterize the model in terms
of the learning rate, number of trees to be built, number of nodes, and tree
complexity (see Elith et al., 2008 for parameter description). Additionally,
BRTs do not require the variables to assume a Gaussian distribution.

BRTs are usually overgrown such that there is overfitting of the data,
thereby increasing the rate of misclassification of new/withheld data. We
dealt with this by using a 10-fold cross validation technique, with each fold
containing an equal number of psuedoabsences and presences and hence
minimized the rate of misclassification.

These 10 data folds were used to determine key parameters. We tested

tree complexity of 5, 8 and 10, number of regression trees within the range
500–2000, in steps of 500, two learning rates of 0.01 and 0.001, and 10 and
20 minimum numbers of observations at each terminal node.

We averaged the resulting 10 BRTmodels to obtain the final model used
to predict suitable habitat for each bird species. To assess the accuracy of the
final model and the 10 interim BRT models, we computed the area under
the curve (AUC) and the Boyce index accuracy metric (Hirzel et al., 2006).

Lastly, we used the mean predicted probability threshold to convert the
probability data to presence/absence only (Liu et al., 2005; Cramer, 2003).
By using this approach, we ensured that we removed all areas that have a
maximum likelihood of suitable habitat (as produced by the BRT models)
lower than the mean predicted probability threshold. The resulting suitable
habitat areas obtained from using this threshold were verified by regional
data reviewers to check whether they truly bounded each species' known
occurrence.

Additional threshold metrics, such as the True Skill Statistic, have
been used in other studies (Allouche et al., 2006). We tested this
approach, by defining thresholds using the True Skill Statistic on a WG
endemic bird species with a broad geographic distribution and one with
a narrow distribution. The results of these analyses were extraordinarily
close to those using the mean predicted probability threshold (see
Appendix A – Table 3 and Supplementary data – S2), and so we report
here only the results based on the mean predicted probability threshold.

All environmental data preparation was carried out in ArcMap
v10.3.1 (ESRI 2014), chiefly using the Spatial analyst licensed tool-
box and R statistical package with contributed packages psych
(Revelle and Revelle, 2016), Ecodist (Goslee and Urban, 2007), Caret
(Kuhn et al., 2014), PresenceAbsence (Freeman and Moisen, 2008),
Ecospat (Hirzel et al., 2006; Franklin, 2010; Broennimann et al.,
2016), and raster and rgdal (Hijmans and Van Etten, 2014; Bivand
et al., 2014).

2.7. Spatial mismatch calculation

We obtained the latest digital distribution maps prepared by BirdLife
International (BLI) and NatureServe (BirdLife International and
NatureServe, 2016). We compared the total summed area within a species'

Table 1
Spatial mismatch between the BLI range maps and the BRT model (thresholded) and the provisional change in threat status implied by this difference.

Species name BLI range
(area in sq. km.)

Current threat
status

Model range
(area in sq. km)

aProposed revised
threat status

Habitat
overestimated (in %)

Total number
of occurrences

Black and rufous flycatcher (Ficedula nigrorufa) 21,356 Near threatened 9300 Vulnerable 56 116
Nilgiri pipit

(Anthus nilghiriensis)
11,558 Vulnerable 1392 Endangered 88 53

Broad-tailed grassbird (Schoenicola platyrus) 19,731 Vulnerable 8222 Vulnerable 58 55
Gray-headed bulbul (Pycnonotus priocephalus) 99,367 Near threatened 29,484 Near threatened 70 276
Kerala laughingthrush (Trochalopteron fairbanki) 1098 Near threatened 1789 Endangered −63b 135
Nilgiri flycatcher

(Eumyias albicaudatus)
32,807 Near threatened 12,376 Vulnerable 63 206

Gray-fronted green pigeon (Treron affinis) 184,624 Least concern 41,492 Near threatened 78 494
Black-chinned laughingthrush (Trochalopteron cachinnans) 1286 Endangered 715 Endangered 45 35
Nilgiri shortwing

(Myiomela major)
1161 Endangered 1050 Endangered 10 43

White-bellied shortwing (Myiomela albiventris) 1354 Endangered 1092 Endangered 20 56
Wynaad laughingthrush (Garrulax delesserti) 154,095 Least concern 24,557 Near threatened 84 97
White-bellied treepie (Dendrocitta leucogastra) 107,972 Least concern 24,320 Near threatened 78 399
White-bellied blue flycatcher (Cyornis pallipes) 44,241 Least concern 43,769 Least concern 1 276
Rufous babbler

(Turdoides subrufa)
178,046 Least concern 35,962 Near threatened 80 394

Nilgiri wood pigeon
(Columba elphinstonii)

116,465 Vulnerable 37,346 Vulnerable 68 193

Malabar parakeet (Psittacula columboides) 121,361 Least concern 38,167 Near threatened 69 748
Malabar gray hornbill

(Ocyceros griseus)
230,696 Least concern 43,060 Near threatened 81 774

Crimson-backed sunbird (Leptocoma minima) 56,994 Least concern 41,999 Least concern 26 780

a Provisional change in threat status is implied based on equating BRT Model range to EOO for a species (similar to the BLI approach, where EOO is the area under the extant
distribution map). Bold lettering indicates a provisional upgrading of threat status. Many species require provisional upgrading to the status of Near Threatened, as there has been a
dramatic reduction in area in their range.

b The Kerala laughingthrush was found to have significantly more habitat than that predicted by BLI.
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published range (polygons) to the cumulative area of the final BRT
thresholded model results for that species, and arrived at the extent of
spatial mismatch in terms of total difference in cumulative areas between
the BRT results and those provided by NatureServe and BLI.

In addition, omission rates of verified eBird occurrences were calculated
as the proportion of occurrences outside the BLI range polygon(s). Finally,
the proportion of modeled suitable habitat that exists outside the confines of
the BLI range polygon boundaries was determined.

3. Results

In 17 of 18 species examined, the BLI range maps overestimate the
ranges predicted by our final BRT model, whose AUC and Boyce Index
ranged from 0.83 to 0.99 and 0.71 to 0.98, respectively (see
Supplementary data – S1). These differences span the Nilgiri pipit
(Anthus nilghiriensis) with the highest range overestimation at 88% to
the White-bellied blue flycatcher with overestimation of 1% of their
range. In contrast, for the Kerala Laughingthrush (Trochalopteron fair-
banki), which has been mapped by BLI using detailed ground survey
records, our model estimates a larger range. Of the 18 species modeled,
only four species had all occurrences within the BLI range polygons.
Omission rates for the remaining 14 species ranged from 0.5% (Nilgiri
flycatcher) to 81% (Nilgiri shortwing). The proportion of suitable
habitat that exists outside the BLI range polygons ranged from 0.4%
(Wynaad laughingthrush) to 62% (Kerala laughingthrush) (Table 2).

If the sum of the area under the BRT thresholded model is equated
to an estimate of EOO, which is analogous to what BLI has currently
done by summing the areas within the MCPs for a particular species, the
threat status of 10 of the 18 endemic species considered in this study
should be provisionally uplisted (Table 1). Although there is no change
in threat status for the remaining 8 species, based on the geographic
range criteria used by the IUCN (Criteria B1), the BLI range maps
significantly overestimate ranges for 7 of these 8 species (Fig. 2;
Appendix A – Figs. 1 to 16). Additionally, 5 of these 8 species have
already been listed by IUCN as Vulnerable or Endangered, and thus
likely warrant immediate attention as our SDMs show that most of these
endemics are found in a much smaller subset of the range that BLI and
IUCN assume.

4. Discussion

Our modeled range size estimates for the 18 WG endemic birds are
significantly smaller than those estimated by BLI for IUCN and provide
a more accurate current distribution of each species. We found that BLI
range maps include large areas of unsuitable habitat and exclude areas
of highly suitable habitat. This range overestimation and underestima-
tion is seen in both high elevation and low elevation species (Fig. 1;
Table 1). Additionally, our analysis highlights the use of broad-scale
filtered and reviewed citizen science data, freely available geo-refer-
enced environmental parameters, and robust statistical and geospatial
techniques for accurate estimation of species ranges, the first of its kind
for the Western Ghats endemic avifauna.

Citizen science programs like eBird can provide concurrent, broadly
sampled and fine-scaled species occurrence data necessary to produce
highly accurate species distribution models. We have incorporated new
advances in satellite imagery, the latest geospatial modeling techni-
ques, and open source datasets of vegetation type (see Roy et al., 2015)
to greatly boost the accuracy of our distributional range maps. These
methods also have the significant added advantage of allowing for
frequent (e.g. annual) monitoring of changes in extent of habitat, and
correlated threat status, for species of interest with relative ease.

All models come with a certain amount of uncertainty, and although
our models might fail to predict every patch of suitable habitat for a
particular species, our modeling protocol tries to ensure that few if any
areas of unsuitable habitat are included. Furthermore, models are
heavily influenced by the input data, in this case citizen science. We
have dealt with discrepancies in the citizen science dataset by rigorous
filtering of freely available data with the help of regional reviewers.
Considering that it is impossible to survey each location in the WG,
within a short time span, for each species, citizen science data and
SDMs help us make an informed prediction about the likely distribution
of species at the scale of the entire WG, a large, remote and rugged
region. In this study, we used a presence-only approach, with rigorous
filtering of data, to model suitable habitat. But, one could use absences
as well, something we hope to do in the future with additional data
collection, to further refine range estimates.

IUCN's extinction threat assessments are based on BLI range maps
and the species population sizes implied by those ranges. Since our
modeled ranges omit large swathes of unsuitable habitats presented in
current BLI range maps, we propose that the threat status of WG
endemic bird species must be reassessed and in many cases must be
uplisted (based on Criterion B1 (Extent of Occurrence)), as a majority of
these species lack supplementary information regarding population size
estimates (IUCN 2016; Table 1; Fig. 3).

Our results suggest threat status uplisting due to range size over-
estimation for 10 of the 18 species we analyzed (Fig. 2). Our findings
for these 10 species highlight two important modes of range area over-
estimation, which are relevant for species globally. The first one relates
to range-restricted habitat specialists that have endured massive habitat
loss in the last few decades. In our analyses, the Nilgiri pipit (Anthus
nilghiriensis) is one such high elevation grassland specialist that has
potentially lost> 88% of its original range as quantified by Robin et al.
(2014)and corroborated by our study (1392 km2 (Model range) vs
11,558 km2 (BLI range)). For such habitat specialists, based on histor-
ical land-cover records, we can directly attribute changes in range size
to habitat loss.

The second mode of over-estimation is seen in species that are
comparatively widely distributed yet inhabit only a small subset of
habitats within that range. In the species we studied, the Malabar
parakeet (Psittacula columboides) and Malabar grey hornbill (Ocyceros
griseus) are both examples of species that are found throughout the
Western Ghats, but are restricted to the swathes of evergreen forest
largely on the west facing slopes and coastal forests of the mountain
range. For these species, our analyses reveal that the inclusion of large
areas of unsuitable habitat in their range is an important driver of range

Table 2
Percent omission rates of occurrences and the percentage of modeled range that falls
outside the BLI range polygons.

Species name Omission
rates (in %)

Modeled range
outside BLI range
polygons (in %)

Black and rufous flycatcher (Ficedula nigrorufa) 4.3 3.5
Nilgiri pipit (Anthus nilghiriensis) 0.0 2.4
Broad-tailed grassbird (Schoenicola platyrus) 16.4 31.1
Gray-headed bulbul (Pycnonotus priocephalus) 37.0 28.7
Kerala laughingthrush (Trochalopteron fairbanki) 72.6 62.5
Nilgiri flycatcher (Eumyias albicaudatus) 0.5 5.6
Gray-fronted green pigeon (Treron affinis) 1.0 0.7
Black-chinned laughingthrush (Trochalopteron

cachinnans)
77.2 56.6

Nilgiri shortwing (Myiomela major) 81.4 60.0
White-bellied shortwing (Myiomela albiventris) 44.7 50.8
Wynaad laughingthrush (Garrulax delesserti) 0.0 0.4
White-bellied treepie (Dendrocitta leucogastra) 0.0 0.0
White-bellied blue flycatcher (Cyornis pallipes) 23.0 30.0
Rufous babbler (Turdoides subrufa) 0 0.8
Nilgiri wood pigeon (Columba elphinstonii) 14.5 16.5
Malabar parakeet (Psittacula columboides) 3.9 7.8
Malabar gray hornbill (Ocyceros griseus) 3.1 3.1
Crimson-backed sunbird (Leptocoma minima) 22.8 26.6
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overestimation in addition to habitat loss. Both of these types of range
overestimation - recent habitat loss and inclusion of unsuitable habitat
within a broad range - are certainly common for other tropical birds
(Hurlbert and Jetz, 2007) and likely for other taxa. By taking an SDM
approach, we have minimized the inclusion of unsuitable habitats in
current species ranges and provide a basis for tracking habitat loss in
the future in known areas of occupancy.

For five of the eight species, for which we do not recommend
uplisting threat status based on our models, threat status is already
listed as vulnerable or endangered. These species have thus already
been identified as needing conservation attention. Our results indicate
significant range size overestimation, even for these species, like the
Nilgiri wood pigeon (Columba elphinstonii), currently listed as
Vulnerable on the IUCN Red List, whose range is overestimated by
BLI by 68%, or the Black-chinned laughingthrush, whose range is
overestimated by BLI by 45%. Both of these species are undoubtedly in
need of more urgent conservation action than currently underway, such
as population estimation, habitat fragmentation analysis, and landscape
management.

We did have one case of range underestimation, the Kerala laugh-
ingthrush (Trochalopteron fairbanki), for which suitable habitat exists
outside the BLI range maps. The proportion of modeled area that exists
outside the BLI range maps for this species was 62%, highlighting the
inability of the BLI range maps to capture suitable habitat that exists
even outside the polygon boundaries (Table 2). This is likely due to the
lack of surveys for this high elevation wet evergreen forest species in
remote regions where it likely exists but has not been documented. This
example, underscores the additional importance of using our data-rich

SDM approach in predicting distribution for focused species sampling.
Because rigorous distribution modeling techniques were until recently
unavailable, very few species range maps produced by BLI and
NatureServe map all potential suitable habitat. Instead they are based
on the knowledge of a handful of field experts and museum curators.
This approach neither helps identify potential areas of un-surveyed but
highly suitable habitat, nor does it help track future changes to suitable
habitats at the scale of the species range.

Recent studies such as Ocampo-Peñuela et al. (2016) and Li et al.
(2016) have shown at continental and regional scales that avian range
maps often overestimate habitat, thereby underscoring that there is an
increased risk of extinction for avifauna worldwide. However, such
studies use an “overly-simple” approach, analogous to BLI's approach,
where assumptions have been made on “frequently-missing” informa-
tion on elevation and land-cover (Peterson et al., 2016). A data-driven
approach such as the one shown in this study should be used in the
future to arrive at robust range estimates and accurate threat-status for
avian taxa worldwide.

Range over-estimation not only introduces inaccuracies to threat
status estimation, but it also makes it difficult to track changes in
habitat or modify ranges to incorporate effects of climate change, and
migratory patterns of hundreds of species worldwide (Runge et al.,
2014; Hurlbert and White, 2005). Moreover, while range overestima-
tion is particularly concerning for species with small local ranges that
are already listed as endangered or vulnerable, it is also problematic for
wider ranging species, where conservation planning to safeguard
important habitats and evolutionarily significant units is needed to
enhance the chances of a species' survival.

Fig. 1. Range maps have been overestimated by BLI and NatureServe for both high elevation specialists such as the Nilgiri pipit (Anthus nilghiriensis) shown on the left to low elevation
species such as the Malabar grey hornbill (Ocyceros griseus) shown on the right. The black outline represents the range polygon used by IUCN for threat assessment and the range in purple
represents the range modeled in this study. The dust brown color represents the boundary of the Western Ghats. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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We have clearly demonstrated that the current practice of using
species range maps provided by BLI and NatureServe grossly over-
estimate range sizes and underestimate threat status in 17 of the 18
Western Ghats endemic bird species we examined. This resonates with
the results of Peterson et al., (2016) and are likely to be true not only of

birds, but of other vertebrates and invertebrates, as well.
Using new and comprehensive data-driven approaches, like the

citizen science - SDM approach described here, can lead to the creation
of more accurate range maps with the added advantage of enabling easy
and routine tracking of changes in species distribution in the future.
Such an approach can significantly inform current and future conserva-
tion assessment and management of endemic and endangered species of
birds, mammals, and other organisms worldwide.
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Fig. 2. Range overestimation for 18 species of Western Ghats endemic birds. White portion of pie chart shows percent suitable habitat within IUCN range, blue portion shows percent of
the range where unsuitable or no habitats are predicted. Red arrows indicate species with potential need for IUCN threat status uplisting. Blue ‘equal’ signs indicate species where no
uplisting is currently needed. Asterisk for Kerala Laughingthrush (KLT) indicates that it is estimated to be found in an area larger than current BLI range maps.Acronyms used in this
figure:NP = Nilgiri pipit, WLT = Wynaad laughingthrush, MGH =Malabar grey hornbill, RB = rufous babbler, GFGP = grey-fronted green pigeon, WBTP = white-bellied treepie,
GHB = grey-headed bulbul, MP = Malabar parakeet, NWP = Nilgiri wood pigeon, NF = Nilgiri flycatcher, BTG = broad-tailed grassbird, BRF = black and rufous flycatcher,
BCLT = black-chinned laughingthrush, CBS = crimson-backed sunbird, WBS = white-bellied shortwing, NS = Nilgiri shortwing, WBBF = white-bellied blue flycatcher,
KLT = Kerala laughingthrush. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A

Table 1
List of Species considered in this study are marked in black. Species that are often
confused with other species in their range are marked in green and were left out of this
study. Species marked in red have been listed as Not Recognized/Not Evaluated by IUCN
and do not contain any BLI Range maps and were left out of this study.

⁎This species is often confused with other species of starlings as well.

Table 2
List of environmental predictor variables considered in this study.

Environmental predictor Data source Spatial

resolution

Annual mean temperature − BIO1 http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Mean diurnal range (mean of

monthly (max temp −min

temp)) − BIO2

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Isothermality (BIO2/BIO7)

(∗100) − BIO3

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Temperature seasonality (standard

deviation ∗ 100) − BIO4

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Max temperature of warmest

month − BIO5

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Min temperature of coldest

month − BIO6

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Temperature annual range

(BIO5–BIO6) − IO7

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Mean temperature of wettest

quarter− BIO8

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Mean temperature of driest

quarter− BIO9

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Mean temperature of warmest

quarter− BIO10

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Mean temperature of coldest

quarter− BIO11

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Annual precipitation − BIO12 http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of wettest

month − BIO13

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of driest

month − BIO14

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation seasonality

(coefficient of

variation) − BIO15

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of wettest

quarter− BIO16

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of driest

quarter− BIO17

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of warmest

quarter− BIO18

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Precipitation of coldest

quarter− BIO19

http://www.worldclim.org/

bioclim; Hijmans et al., 2005

1 km

Elevation Interpolated from Shuttle Radar

Topography Mission

1 km

Aspect Derived from Elevation 1 km

Slope Derived from Elevation 1 km

Enhanced Vegetation Index for the

month of February (averaged

across 2000–2015)

Obtained from Moderate

Resolution Imaging

Spectroradiometer (MODIS)

1 km

Enhanced Vegetation Index for the

month of April (averaged

across 2000–2015)

Obtained from Moderate

Resolution Imaging

Spectroradiometer (MODIS)

1 km

Enhanced Vegetation Index for the

month of July (averaged across

2000–2015)

Obtained from Moderate

Resolution Imaging

Spectroradiometer (MODIS)

1 km

Enhanced Vegetation Index for the

month of December (averaged

across 2000–2015)

Obtained from Moderate

Resolution Imaging

Spectroradiometer (MODIS)

1 km

Vegetation type map (that included

35 predictors such as Evergreen

Forests, Moist Deciduous et al.)

http://bis.iirs.gov.in/; Roy

et al., 2015

~23.5 m

(resampled

to 1 km)
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Fig. 1. Spatial mismatch between the BLI and NatureServe range maps and the accurate
range modeled in this study for the black chinned laughingthrush (Trochalopteron
cachinnans). The black outline represents the range polygon used by IUCN for threat
assessment and the range in purple represents the range modeled in this study. The dust
brown color represents the boundary of the Western Ghats.

Fig. 2. Spatial mismatch between the BLI and NatureServe range maps and the accurate
range modeled in this study for the black and rufous flycatcher (Ficedula nigrorufa). The
black outline represents the range polygon used by IUCN for threat assessment and the
range in purple represents the range modeled in this study. The dust brown color
represents the boundary of the Western Ghats.

Table 3
Additional analyses to compare results of using the True Skill Statistic threshold and manual thinning of occurrence data

Species name No. of presences
(after hand-thinning)

No. of presences
(using spThin)

Modeled area (using the True
Skill Statistic threshold)

Modeled area (using the
Mean probability threshold)

BLI range

Kerala laughingthrush
(Trochalopteron
fairbanki)

138 135 1794 km2 1789 km2 1098 km2⁎

Grey-headed bulbul
(Pycnonotus
priocephalus)

304 276 31,057 km2 29,484 km2 99,367 km2

⁎ Asterisk for Kerala Laughingthrush (KLT) indicates that it is estimated to be found in an area larger than current BLI range maps (see text).
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Fig. 3. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the broad-tailed grassbird⁎ (Schoenicola platyrus). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the Western
Ghats.⁎Occurrences for this species were considered only South of Goa, as verified eBird records were not used North of Goa for this study.

Fig. 4. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the crimson-backed sunbird (Leptocoma minima). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.
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Fig. 5. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the grey-fronted green pigeon (Treron affinis). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.

Fig. 6. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the grey-headed bulbul (Pycnonotus priocephalus). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.
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Fig. 7. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Kerala laughingthrush (Trochalopteron fairbanki). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.

Fig. 8. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Malabar grey-hornbill (Ocyceros griseus). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.
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Fig. 9. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Malabar parakeet (Psittacula columboides). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.

Fig. 10. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Nilgiri flycatcher (Eumyias albicaudatus). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.
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Fig. 11. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Nilgiri shortwing (Myiomela albiventris). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.

Fig. 12. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Nilgiri pipit (Anthus nilghiriensis). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.
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Fig. 13. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Nilgiri wood pigeon (Columba elphinstonii). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.

Fig. 14. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the rufous babbler (Turdoides subrufa). The black outline
represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary of the
Western Ghats.
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Fig. 15. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the white-bellied blue flycatcher (Cyornis pallipes). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.

Fig. 16. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the white-bellied shortwing (Myiomela albiventris). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.
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Fig. 17. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the white-bellied treepie (Dendrocitta leucogastra). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.

Fig. 18. Spatial mismatch between the BLI and NatureServe range maps and the accurate range modeled in this study for the Wynaad laughingthrush (Garrulax delesserti). The black
outline represents the range polygon used by IUCN for threat assessment and the range in purple represents the range modeled in this study. The dust brown color represents the boundary
of the Western Ghats.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.biocon.2017.03.019.
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