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Disentangling associations between species occupancy and its environmental drivers 
–– climate and land cover –– along tropical mountains is imperative to predict species 
distributional changes in the future. Previous studies have primarily focused on iden-
tifying such associations in temperate mountain systems. Using 1.29 million robustly 
processed citizen science observations contributed to eBird between 2013 and 2021, we 
examined the role of climatic and landscape variables and its association with bird spe-
cies occurrence within a tropical biodiversity hotspot, the southern Western Ghats in 
India. Using an occupancy modeling framework, we found that temperature seasonal-
ity, precipitation seasonality, and the proportion of evergreen forests were significantly 
associated with species-specific probabilities of occupancy for 78% (n=43 birds), 38% 
(n=21 birds), and 27% (n=15 birds) of bird species examined, respectively. Our study 
shows that several forest birds (n=18 species) were negatively associated with tempera-
ture seasonality, highlighting narrow thermal niches for such species. The probability 
of occupancy of six forest species and eight generalist species was positively associated 
with precipitation seasonality, indicating potential associations between rainfall and 
resource availability, and thereby, species occurrence. A smaller number of largely gen-
eralist species (n=9 birds) were positively associated with human-modified land cover 
types –– including the proportion of agriculture/settlements and plantations. Our 
study shows that rigorously filtered citizen science observations can be used to identify 
associations between environmental drivers and species occupancy on tropical moun-
tains. Though current distributions of tropical montane birds of the Western Ghats are 
strongly associated with climatic factors (mainly, temperature seasonality), naturally 
occurring land cover types (forests) are critical to sustaining montane avifauna across 
human-modified landscapes in the long run. 
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Introduction

Tropical montane ecosystems are hotspots of biologi-
cal diversity and are home to over 70% of the world’s 
avian diversity in less than 10% of global terrestrial area 
(Myers et al. 2000, Davies et al. 2007, Quintero and Jetz 
2018). However, tropical mountains are under tremendous 
anthropogenic pressures of habitat modification and cli-
mate change, which can both have negative consequences 
for bird species (Nogués-Bravo et al. 2007, Newbold et al. 
2015). In addition to directly affecting bird populations, 
climate change and changes in land cover can also affect 
species distributions in montane areas worldwide (Nogués-
Bravo et al. 2007, Rahbek et al. 2019). For example, moun-
tain birds in California tracked changes in temperature and 
precipitation over a century, illustrating the long-term role 
of climate in driving range shifts (Tingley et al. 2009). The 
movement of temperature bands upslope can eliminate the 
conditions to which high-altitude species are adapted, lead-
ing to local extinction (Freeman et al. 2018, Urban 2018). 
A combination of changes in climate and land cover best 
explains the colonization and extinction probabilities of 
North American birds (Yalcin and Leroux 2018). However, 
few studies have disentangled the role of these two driv-
ers on species’ current distributions (Sirami  et  al. 2017). 
Furthermore, species distributions in tropical moun-
tains especially are poorly studied despite being ‘escala-
tors to extinction’ for montane birds (Elsen  et  al. 2017, 
Freeman et al. 2018, Srinivasan et al. 2019, Srinivasan and 
Wilcove 2020). Understanding the contemporary drivers of 
species’ distributions in tropical mountains can help predict 
future species ranges as the environment changes (Guo et al. 
2018, Srinivasan and Wilcove 2020).

The drivers of bird distributions in tropical montane eco-
systems are poorly understood because data on species dis-
tributions in these regions are limited (Payne  et  al. 2017, 
Peters  et  al. 2019). Citizen science efforts offer a solution: 
initiatives such as eBird are growing in popularity and scale 
and make the observation data readily available to research-
ers (Sullivan et al. 2014). eBird combines many thousands 
of decentralized, ad hoc, organized or semi-organized bird 
observations to form representative samples of species’ occur-
rence over vast scales (Sullivan et al. 2009, 2014, Wood et al. 
2011). The standardization of the reporting infrastructure 
(e.g. the eBird mobile app or website) allows observations 
to be reproducibly processed to achieve a high standard of 
reliability. For example, one can filter out short observation 
sessions that might not accurately capture a location’s bird 
community or weight observations by the observer’s effort 
(Kelling et al. 2015, Johnston et al. 2018, 2021). Including 
data from citizen scientist observations can significantly 
improve species distribution models (Robinson et al. 2020), 
and enable a wide range of research, including mapping spe-
cies elevational movements (Tsai et al. 2020) and prioritiz-
ing conservation efforts (van Strien et al. 2013, Fink et al. 
2014, Johnston et al. 2015). India reports one of the larg-
est numbers of eBird checklists from a tropical country, 

as birdwatchers have contributed to eBird in a concerted 
and growing effort since 2014 (Viswanathan  et  al. 2020). 
Coordinated citizen science efforts have led to successfully 
mapping the distribution and abundance of birds across 
multiple regions in India (e.g. Kerala bird atlas, Mysore bird 
atlas; Praveen  et  al. 2021). As of March 2021, the eBird 
India dataset has grown to a total of over 14 million observa-
tions across 1342 species of birds.

We set out to examine the role of climate and land cover 
and its association with bird occupancy in a tropical montane 
region, the Western Ghats of southern India. The Western 
Ghats mountain ecosystem is part of the Western Ghats-Sri 
Lanka biodiversity hotspot and is home to numerous species 
of endemic plants and animals (Myers et al. 2000, Das et al. 
2006). We examined observations from eBird between 2013 
and 2021 for 79 species (later reduced to 55, following model 
fitting) of birds across the two largest hill ranges in the south-
ern Western Ghats – the Nilgiri and the Anamalai-Palani hills 
(Fig. 1a). Specifically, we tested associations between climatic 
variables, land cover and bird occupancy. We binned species 
according to their habitat preference prior to hypothesis test-
ing; a species could either be a forest species (species found in 
forested/woodland habitats as well as forest edges) or general-
ist species (widespread species found across a range of habitat 
types) (Ali and Ripley 1983).

First, we examined the direction of association between 
species-specific probability of occupancy and climatic predic-
tors. Temperature seasonality: We tested the hypothesis that 
the probability of occupancy of forest specialist birds should 
be negatively associated with temperature seasonality (coef-
ficient of variation) (Srinivasan et al. 2019). Tropical forest 
species are often associated with a narrow range of tempera-
tures leading to the expectation that the probability of occu-
pancy will decrease with increasing variation in temperatures 
(Janzen 1967, Stevens 1989, Chan et al. 2016, Frishkoff et al. 
2016, Srinivasan et al. 2018). However, we expected that the 
occupancy of generalist species may be positively associated 
with temperature seasonality. In other words, we expected 
that generalist species have broader thermal niches and occur 
in climatically variable regions when compared to their for-
est counterparts. Precipitation seasonality: the ‘hygric’ niche 
hypothesis states that species often occur within an optimal 
range of rainfall conditions (Boyle  et  al. 2020). Across our 
study area, we expected that precipitation seasonality (coef-
ficient of variation) would be positively associated with spe-
cies occupancy for forest birds and negatively associated with 
generalist bird species. Forest species in the Western Ghats 
are largely seen in wetter habitats relative to generalist species 
that are more often found in drier habitats (Raman 2006). 
Finally, we examined the direction of association between 
species-specific probability of occupancy and land cover. 
We expected the occupancy of forest species to be positively 
associated with naturally occurring land cover types such as 
evergreen forests and deciduous forests. We expected that 
human-modified land cover types, including agriculture, set-
tlements and plantations would be positively associated with 
species-specific probability of occupancy of generalist birds.
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Figure 1.The Nilgiri and Anamalai hills in southern India provide a convenient geography for studying the interplay of land cover and cli-
mate on the distributions of bird species. (a) The Nilgiri and Anamalai hills of the southern Western Ghats are topographically complex, 
with maximum elevations > 2000 m, and are separated by the very low-lying Palghat Gap, which serves as a natural barrier to the dispersal 
of many hill birds. (b) Lower elevations are primarily covered by agriculture and settlements, reflecting the intense human pressure on this 
region, while mid- and higher elevations show a mix of natural and human-modified land cover types (see Fig. 2 for details). (c) The coastal 
edge of the area, and the windward hill slopes show limited temperature seasonality across the December–May period; this seasonality 
increases with distance from the coast but is lower at higher elevations inland. (d) Higher elevations also show limited precipitation seasonal-
ity than both low-lying coastal and inland regions. Our study area (bounds shown as dashed lines) includes multiple combinations of eleva-
tion, land cover type and temperature and precipitation seasonality, resulting in a naturally occurring crossed-factorial design that allows us 
to study the effects of climate and land cover on bird occupancy. Representative forestand generalist birds from the study area are shown 
between panels (all images were obtained from Wikimedia commons and credit is assigned for each species in brackets); From L to R: 1) 
Malabar grey hornbill (by Koshy), 2) Ccrimson-backed sunbird (by Mandar Godbole), 3) Asian emerald dove (by Selvaganesh), 4) Black-
and-orange flycatcher (by LKanth), 5) Grey-headed canary flycatcher (by David Raju), 6) Greater-racket tailed drongo (by MD Shahanshah 
Bappy), 7) Eurasian hoopoe (by Zeynel cebeci), 8) Chestnut-headed bee-eater (by MikeBirds), 9) Coppersmith barbet (by Raju Kasambe), 
10) Red-vented bulbul (by TR Shankar Raman), 11) Pied bushchat (by TR Shankar Raman), 12) Ashy prinia (by Rison Thumboor). 
Elevation is from 30 m resolution SRTM data (Farr et al. 2007), land cover, at 1 km resolution, is reclassified from Roy et al. (2015), while 
climatic variation is represented by CHELSA seasonality layers (temperature: BIOCLIM 4a, rainfall: BIOCLIM 15), at 1 km resolution 
(Karger et al. 2017). All layers were resampled to 1 km resolution for analyses.
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Material and methods

The southern Western Ghats

The Nilgiri and the Anamalai-Palani hills (hereafter, 
Anamalai hills) (Fig. 1) are part of the Western Ghats, an 
ancient region of differentiation of flora and fauna in south 
Asia (Mani 1974, Myers  et  al. 2000, Vijayakumar  et  al. 
2016). These hill ranges host a diversity of land cover types, 
possess a wide climatic gradient and several bird species (Ali 
and Ripley 1983, Das  et  al. 2006). The elevational range 
across these hill ranges varies from 40 m in the plains to 
2625 m in the higher elevations (Fig. 1a). These two hill 
ranges are home to a multitude of habitats, ranging from 
high elevation grasslands (> 1400 m; Fig. 1b) to mid-ele-
vation evergreen forests (> 700 m and < 1400 m; Fig. 1b). 
These hill ranges interact strongly with the annual south–
west monsoon resulting in orographic rainfall on the western 
slopes (~3000 mm) and a relative rain-shadow on the lee-
ward eastern slopes (~2000 mm) that in turn influences the 
distribution of endemic flora and fauna (Gadgil and Meher-
Homji 1986, Pascal 1988, Robin et al. 2015).

Filtering eBird data

Data from eBird is available in the form of a ‘checklist’ sub-
mitted by an observer or a group of observers. Each checklist 
includes a wide range of information that includes species 
identity, latitude, longitude, date of observation, distance 
traveled, time spent observing etc. ‘Complete’ checklists indi-
cate that the observer(s) recorded all the birds detected and 
identified. We obtained bird detections from such complete 
checklists contributed to eBird for nine years (2013–2021) 
across the Nilgiri and Anamalai hill ranges. Only checklists 
recorded during December to May (non-rainy months) were 
included in our study because detecting birds during the 
rainy months is difficult due to poor weather. Restricting our 
data to complete checklists also allowed us to interpret the 
absence of a species on a checklist as a non-detection (called 
zero-filling; Johnston  et  al. 2021). Even when restricting 
analysis to only ‘complete’ checklists, the semi-structured, 
flexible nature of databases like eBird results in large variation 
in effort across checklists as a result of the often opportunis-
tic nature of data collection (Kelling et al. 2019). Complete 
checklists are marked as ‘Stationary’ or ‘Traveling’ based on 
the distance traveled by an observer while recording detec-
tions. To reduce variation in observer effort, we first consid-
ered only those complete checklists with a duration ≤ 300 
min (5 h), and distance ≤ 5 km (for traveling checklists), 
and with fewer than 10 observers (following Johnston et al. 
2021). Since stationary birdwatchers can detect birds up to 
100 m away, we set all stationary checklists to a distance of 
100 m. In many cases, checklists are submitted by a single 
observer for a group of birdwatchers; in such cases, the group 
checklist only occurs once in the dataset. We used only check-
lists recorded between 05:00 and 19:00 h to avoid sightings 
in low-light conditions.

Selecting study species

We limited our study to 79 species of terrestrial, diurnal birds 
that occur in our study region (see list of species in Supporting 
information; see Fig. 1 for representative species). We selected 
these species using inclusion criteria adapted from the State 
of India’s Birds Report 2020 (SoIB 2020, Viswanathan et al. 
2020). We intended these criteria to ensure uniform sam-
pling of each species across our study area, and to reduce 
erroneous associations between environmental drivers and 
species distributions. Beginning with 3.37 million observa-
tions of 684 species in eBird that occurred within the out-
lines of our study area (Fig. 1a), over the years 2013–2021, 
we retained only those species that had a minimum of 1000 
detections each between 2013 and 2021 (347 species remain-
ing; 3.33 million observations). Next, we divided the study 
area into 25 × 25 km grid cells (42 unique cells; Supporting 
information). We kept only those species that occurred in at 
least 5% of all checklists across at least 27 unique grid cells 
(50% of the study area). We further manually removed rap-
tors (Accipitriformes and Falconidae), swifts (Apodiformes) 
and swallows (Hirundinidae) since these birds are usually 
observed in flight when species identification can be prone to 
errors. This filtering process resulted in a total of 1.29 million 
observations (presences) across our study area.

Spatio-temporal bias in occurrence data

Sampling bias can be introduced into citizen science observa-
tions due to the often opportunistic nature of data collection 
(Sullivan et al. 2014). For eBird, this translates into check-
lists reported when convenient, rather than at regular or ran-
dom points in time and space, leading to non-independence 
in the data if observations are spatio-temporally clustered 
(Johnston et al. 2021). For example, sites near roads are eas-
ier to reach and maybe sampled more frequently. The spatial 
clustering of observations can be reduced by sub-sampling 
at an appropriate spatial resolution (Aiello-Lammens  et  al. 
2015); however, thinning the data over-zealously can result 
in very few presence records compared to absence records 
(i.e. class imbalance; Steen et al. 2021). Consequently, when 
there are many more absence records than presence records, 
presences and absences should be handled separately when 
spatially thinning the data.

We first estimated two simple measures of spatial clus-
tering: the distance from each site to the nearest road (road 
data from OpenStreetMap; OpenStreetMap contributors 
2017) and the nearest-neighbor distance for each site. Sites 
were strongly tied to roads (Fig. 3a; mean distance to road ± 
SD = 390.77 ± 859.15 m; range = 0.28 m–7.64 km) and were 
on average only 297 m away from another site (SD = 553 m; 
range = 0.14 m–12.85 km). This is understandable, as roads 
and trails provide access, and particular well-known areas are 
visited often. On average, across species, presences comprised 
only 8.5% of all observations. We followed Steen et al. (2021) 
in choosing to spatio-temporally thin only the absences, and 
not the presences, for each species – a methodology called ‘thin 
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Figure 2.Climate and land cover vary strongly along the elevation gradient in the Nilgiri and Anamalai hills. Both (a) temperature seasonal-
ity and (b) precipitation seasonality, between the months of December and May, declines with increasing elevation across the Nilgiri and 
Anamalai hills. Climatic variation is not very strongly associated with land cover type, as both natural habitats such as forests, and human-
associated habitat types such as plantations show low seasonality in (c) temperature and (d) precipitation. (e) Most elevations host a range 
of land cover types: while human-associated habitats such as agriculture are concentrated at lower elevations, and more natural types such 
as grasslands and forests are associated with higher elevations, each of these types is also found outside their characteristic elevational bands. 
We calculated climate seasonalities (BIOCLIM 4a and 15: temperature and precipitation, respectively) using CHELSA data over 1979–
2013, from December to May (Karger et al. 2017), and present mean seasonality values (vertical bars show standard deviation) for every 
200 m elevational band. Land cover types were taken from a reclassification of Roy et al. (2015; see main text) at 100 m elevational bands. 
Land cover types covering < 1% of an elevational band are shaded grey. All landscape layers were first resampled to 1 km resolution.
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majority’ that can improve model performance (Steen et al. 
2021). To do this, we divided the study area into a grid of 500 
m wide square cells, and from within each cell, we chose the 
site with the most visits (checklists) over the sampling period. 
From each of the remaining sites, we selected a maximum of 
10 random absence checklists to reduce temporal clustering, 
keeping all absence checklists for sites with ≤ 10 checklists. 
We retained all presences for each species without any spatial 
or temporal thinning (Steen et al. 2021). As a result of class 
balancing, in our final dataset, presences made up 29.3% of 
observations on average across species.

Adjusting for spatial precision

Every checklist on eBird is associated with a latitude and 
longitude. However, the coordinates entered by an observer 
may not accurately depict the location at which a species is 
detected. Such an error can occur for two reasons: first, trav-
eling checklists are associated with a single location along the 
route travelled by observers. Second, checklist locations could 
be assigned to a ‘hotspot’ – a location that is automatically 
marked by eBird as being frequented by multiple observers 
– even though the observation was not made at the precise 
location of the hotspot (Praveen 2017). Since a large propor-
tion of observations occur within 3 km of the observation 

effort’s starting point, we adjusted for the spatial precision of 
eBird records by considering a buffer radius of 2.5 km around 
each site when sampling environmental covariate values.

Calibrating observations across observers

Differences in bird identification skills among citizen sci-
entists can lead to biased species detection when compared 
with data collected by a consistent set of trained observers 
(van Strien et al. 2013). Including observer calibration (that 
accounts for observer-specific differences in identification) as 
a detection covariate in occupancy models using eBird data 
can help account for this variation (Johnston  et  al. 2018). 
Observer-specific calibration in local avifauna was calculated 
following Kelling et al. (2015) as the normalized predicted 
number of species reported by an observer after 60 min of 
sampling across the most common land cover type within the 
study area (in our case, deciduous forests). This score was cal-
culated by examining checklists from anonymized observers 
across the study area. We modified the Kelling et al. (2015) 
formulation by including only observations of the 79 spe-
cies of interest in our calculations. An observer with a higher 
number of species of interest reported within 60 min would 
have a higher observer-specific calibration score, with respect 
to the study area. We then estimated a checklist calibration 

Figure 3.Distribution of sampling effort in the form of eBird checklists in the Nilgiri and Anamalai hills between 2013 and 2021. (a) 
Sampling effort across the Nilgiri and Anamalai hills, in the form of eBird checklists reported by birdwatchers, mostly takes place along 
roads, with the majority of checklists located < 1 km from a roadway (see distribution in inset), and therefore, only about 300 m, on aver-
age, from the location of another checklist. (b) eBird checklists are also strongly clustered in time, with some of the most sampled areas over 
the study period visited at intervals of < 1 week, and with some less intensively sampled areas visited frequently, at intervals of > 1 week. 
Overall, most checklists are reported only a day after the previous checklist at that location (see inset). Both spatial and temporal clustering 
make data thinning necessary. Both panels show counts or mean intervals in a 2.5 km grid cell; the study area is bounded by a dashed line, 
and roads within it are shown as (a) blue or (b) red lines.
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index (CCI) from observer-specific calibration scores associ-
ated with each checklist. The CCI was the lone observer’s 
calibration score for single-observer checklists and the highest 
calibration score among observers for group checklists.

CCI is predicted from a generalized linear mixed effects 
model:

nSpeciesOfInterest duration sqrt duration landcover
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+
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where, nSpeciesOfInterest is the number of species observed in 
that checklist, duration is the time spent observing birds for 
that checklist, landcover refers to the land cover type, time_
of_day refers to the time of the day that observations were 
made and julian_date refers to the ordinal day of the year.

Preparing occupancy predictors

We prepared a suite of climatic and land cover variables to 
be modeled as covariates of species-specific probabilities of 
occupancy within our full study region (Fig. 1, 2). Among 
climatic predictors, we chose to examine the effects of tem-
perature and precipitation seasonality on species occupancy, 
and we obtained these predictors at a spatial scale of 1 km 
(CHELSA; Karger  et  al. 2017). Temperature seasonality is 
defined as the amount of temperature variation over a given 
time period based on the ratio of the standard deviation of the 
monthly mean temperatures to the mean of the monthly tem-
peratures (O’Donnell and Ignizio 2012). In other words, tem-
perature seasonality is the coefficient of variation and captures 
the dispersion in relative terms because standard deviation can 
produce two similar values while the means may be different. 
Larger values of temperature seasonality imply higher variabil-
ity in temperature, relative to the average temperature. It is 
important to calculate variability relative to the mean because 
the same amount of statistical variability (e.g. variance) in a 
dry area as a wet area would have a much bigger ‘seasonality’ 
impact on a dry area. Similarly, we defined precipitation sea-
sonality as the ratio of the standard deviation of the monthly 
total precipitation to the mean monthly total precipitation 
(O’Donnell and Ignizio 2012). The above calculations of sea-
sonality were made using temperature and precipitation data 
from CHELSA for the non-monsoon months of December 
to May for our study area. While data from global databases 
such as WorldClim have been used for modeling species dis-
tributions, CHELSA data has shown greater predictive power 
(Karger et al. 2017) and hence we used the latter in this study. 
Other bioclimatic predictors such as mean annual tempera-
ture/precipitation, mean temperature of coldest/driest quar-
ter, precipitation of driest/coldest quarter were equally well 
suited for our study; however, they were highly correlated (|r| 
> 0.5) with temperature and precipitation seasonality.

We obtained land cover over our study site from a high-
resolution vegetation type map generated by Roy  et  al. 
(2015), using medium resolution IRS-LISS III (Indian 
Remote Sensing Satellite – Linear Imaging Self Scanner) 
images (<http://bis.iirs.gov.in/>). This classification was 
originally generated at a scale of ~23 m and with 22 land 
cover classes for our study area. We aggregated these 22 classes 
into seven broad, ecologically relevant land cover types: ever-
green forests, deciduous forests, mixed/degraded forests, agri-
culture/settlements, plantations, grasslands and water bodies 
(Supporting information). We resampled the reclassified land 
cover layer using a nearest neighborhood approach to 1 km to 
match the 1 km resolution of the climatic layers.

Testing for collinearity among the climatic and land cover 
predictors did not result in the removal of any predictors as 
the correlations were low (|r| <0.5). We then pooled the cli-
matic (n = 2) and land cover (n = 7) predictors and calculated 
mean values for the two climatic predictors (temperature 
seasonality and precipitation seasonality) and calculated the 
proportion of each of the seven land cover types within the 
2.5 km buffer radius around each spatio-temporally thinned 
locality for each species.

Estimating species occupancy

Occupancy models estimate the probability of occurrence of 
a given species while controlling for imperfect detection and 
allow us to model the factors affecting occurrence and detection 
independently (MacKenzie et al. 2017, Johnston et al. 2018). 
The flexible eBird observation process contributes to the largest 
source of variation in the likelihood of detecting a particular spe-
cies (Johnston et al. 2021); hence, we included six continuous 
covariates that influence the probability of detection for each 
checklist: ordinal day of year, duration of observation, distance 
travelled, time of day of observations, number of observers and 
the checklist calibration index (CCI). We converted calendar 
date into a linear, continuous predictor by extracting ordinal 
days of the year (Julian date) for December to May and scaling 
them between 1 and 183 (dates in December subtracted from 
333, and 31 added to dates between January and May). This 
time period essentially includes winter and summer seasons 
(loosely defined) in the Western Ghats where detectability of 
bird species is high. Our breeding season is often toward the end 
of this window (late April to early May) when resident species 
begin to breed while migratory birds travel back to their breed-
ing grounds. We modeled time of day so as to allow detectabil-
ity to be highest at dawn and dusk when birds often sing and are 
easily detected, and to be lower in the middle of the day, when 
birds are least active and thus less likely to be detected.

Using a multi-model information–theoretic approach, we 
tested how strongly our occurrence data fit our candidate set 
of environmental covariates (Burnham and Anderson 2002). 
We fitted single-species occupancy models for each species, 
to simultaneously estimate a probability of detection (p) and 
a probability of occupancy (Ѱ) (MacKenzie et al. 2002, Fiske 
and Chandler 2011). For each species, we fit 512 models, 
each with a unique combination of the (climate and land 
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cover) occupancy covariates and all detection covariates (the 
six detection covariates are present in every model).

Probability of detection

logit p julian date duration minutes

effort distance km m

( ) +

+ +

= _ _

_ _ iin obs started

number observers CCI

_ _

_+ +

where julian_date refers to the ordinal day of the year, dura-
tion_minutes refers to the time spent observing birds in min-
utes, effort_distance_km refers to the distance travelled by the 
observer(s) in kilometers, min_obs_started is the time of day 
when observations were recorded, number_observers refer to the 
number of observers and CCI is the checklist calibration index.

Probability of occupancy

logit temperatureSeasonality precipitationSeasonality

p

y( ) +

+

=

rropEvergreen propDeciduous propMixedDegraded

propAgricult

+ +

+ uureSettlements propPlantations

propGrasslands propWaterBo

+

+ + ddies

Previously, we explored the non-linear effects of temperature 
seasonality and precipitation seasonality. However, our occu-
pancy models showed a poor fit to the data when tempera-
ture and precipitation seasonality were included as non-linear 
terms and hence, we did not explore this further. Adequate 
model fit was assessed using a chi-square goodness-of-fit test 
using 1000 parametric bootstrap simulations on a global 
model that included all occupancy and detection covariates 
(MacKenzie and Bailey 2004). Across the 512 models tested 
for each species, the model with highest support was deter-
mined using AICc scores. However, across the majority of the 
species, no single model had overwhelming support. Hence, 
for each species, we examined those top models which had a 
difference in AICc of < 4, as these top models were considered 
to explain a large proportion of the association between the 
species-specific probability of occupancy and environmental 
drivers (Burnham et al. 2011). Using these restricted model 
sets for each species; we created a model-averaged coefficient 
estimate for each predictor and assessed its direction and sig-
nificance (Bartoń 2020). These model-averaged coefficients 
include zeros when a predictor is absent in one of the top 
models. In addition, we estimated a model-averaged standard 
error using which we calculated a 95% confidence interval 
(Burnham and Anderson 2002). We considered a predictor 
to be significantly associated with occupancy if the range 
of the 95% confidence interval around the model-averaged 
coefficient did not contain zero.

Prior to further inference, all 79 birds in our study were 
classified as forest species or generalist species following Ali 
and Ripley (1983). Forest species are those that are typically 
found in wet evergreen, semi-evergreen, deciduous, moist 
deciduous forests and other woodland habitats as well as for-
est edges. This classification encompasses specialist endemic 
birds, species that occur in woodland habitats as well as those 
species found along the edges of forested areas. Generalist spe-
cies are those that are typically found across a range of habitat 
types such as forests, agricultural lands, settlements, etc.

All continuous covariates were standardized prior to anal-
ysis, allowing for the comparison of model-averaged coeffi-
cients between species. We used the R packages unmarked, 
and MuMIn for occupancy modeling and model averaging; 
the code provided on our Github repository shows the full set 
of R and Python packages used in this work (Bartoń 2020, 
Fiske and Chandler 2011, <www.r-project.org>).

Results

Following spatio-temporal thinning of observations, we relied 
on 315,428 curated citizen scientist observations (includ-
ing both presences and non-detections) across 79 species of 
birds between 2013 and 2021 for modeling occupancy. The 
number of detections varied from a minimum of 224 obser-
vations to a maximum of 7725 observations per species (fol-
lowing spatio-temporal thinning). Chi-square goodness-of-fit 
tests suggested a poor model fit for twenty-four species (p < 
0.05; Supporting information) and hence these species were 
removed before further analysis (resulting in a total of 55 
species). Of the list of 55 species, six species were migratory 
species that are present in our study area during the focal sea-
sonal time period: Blyth’s reed warbler Acrocephalus dumeto-
rum, brown shrike Lanius cristatus, chestnut-headed bee-eater 
Merops leschenaulti, grey wagtail Motacilla cinerea, Eurasian 
hoopoe Upupa epops and Ashy drongo Dicrurus leucophaeus.

Bird-climate associations

The probability of occupancy of ~78% (n = 43 out of 55) of 
species examined was significantly (p < 0.05) associated with 
temperature seasonality. 18 bird species (n = 14 generalist 
birds and 4 forest birds) showed a positive association with 
temperature seasonality, while 25 bird species (n = 7 generalist 
birds and 18 forest birds) were negatively associated (Fig. 4, 
Table 1). The probability of occupancy of ~38% of (n = 21 
out of 55) species examined had a significant association with 
precipitation seasonality. 14 bird species (n = 8 generalist birds 
and 6 forest birds) showed a positive association, while seven 
bird species (n = 5 generalist birds and 2 forest birds) were 
negatively associated with precipitation seasonality.

Bird-land cover associations

Twenty-seven percent of species (n = 15 out of 55) were sig-
nificantly associated with the proportion of evergreen forests. 
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Of these species, eight forest birds were positively associated. 
Among generalist birds that showed a significant association 
with the proportion of evergreen forests, three species were 
positively associated while four were negatively associated. A 
fewer number of species (n = 4) were significantly associated 
with the proportion of deciduous forests (positive associa-
tion with two forest species and a negative association with 
two generalist bird species). Six bird species showed a sig-
nificant association with the proportion of grasslands. Of 
these species, three forest bird species and three generalist 
birds showed a negative association (Fig. 4, Table 1). Five 
bird species were significantly and positively associated with 
the proportion of water bodies (n = 3 generalist birds and 2 
forest birds).

33% (n = 18 out of 55) of species examined were sig-
nificantly associated with human-modified land cover types 

– including the proportion of agriculture or settlements, 
plantations and mixed or degraded forests. One forest spe-
cies showed a negative association, and one generalist spe-
cies was positively associated with the proportion of mixed 
or degraded forests. Five bird species showed a significant 
association with the proportion of agriculture or settlements. 
Of these species, two generalist bird species showed a positive 
association while one forest species and two generalist bird 
species showed a negative association.

Eleven bird species showed a significant association with 
the proportion of plantations. Of these species, one forest 
bird species showed a negative association, and one forest bird 
species showed a positive association. Among generalist birds 
that showed a significant association with the proportion of 
plantations, seven birds were positively associated while two 
birds showed a negative association.

Figure 4.Environmental predictors and species-specific associations. The direction of association between species-specific probability of occu-
pancy and climatic and landscape predictors is shown here (as a function of habitat preference). Blue colors show the number of species that are 
positively associated with a climatic/landscape predictor while red colors show the number of species that are negatively associated with a climatic/
landscape predictor (see Table 1 for the number of forest/generalist species that show positive/negative association with each of the predictors).
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Discussion

Our study shows that rigorously filtered and curated citizen 
science observations can be used within a robust statistical 
framework to inform our understanding of how environmen-
tal drivers are associated with species distributions. We high-
light the role of climate and land cover and its associations 
with bird occurrences along a tropical montane gradient in a 
biodiversity hotspot, the southern Western Ghats.

The role of temperature

Tropical montane birds are especially vulnerable to ongoing 
changes in climate (Şekercioĝlu et al. 2012, Perez et al. 2016, 
Freeman  et  al. 2018, Srinivasan  et  al. 2019). As a result of 
reduced temperature seasonality in the tropics relative to tem-
perate regions, montane species in particular exhibit narrow 
thermal niches and hence, are likely to be unable to shift their 
distributions to track future climate changes (Janzen 1967, 
Deutsch et al. 2008, Tewksbury et al. 2008, Jankowski et al. 

2013). Previous work in tropical areas across the globe have 
demonstrated that forest species are adapted to thermally asea-
sonal environments, while generalist species are more adapted 
to thermally variable, seasonal environments (Chan  et  al. 
2016, Frishkoff et al. 2016). In line with previous work, our 
study showed that several forest bird species (n = 18) were 
negatively associated with temperature seasonality. Species 
such as the crimson-backed sunbird Leptocoma minima, asian 
fairy-bluebird Irena puella and the chestnut-headed bee-eater 
Merops leschenaulti for example showed a negative association 
(Fig. 5,  6). The above result suggests that forest birds across 
the elevational gradient are potentially associated with narrow 
thermal niches. Similar results have been demonstrated in the 
Western Himalayas, where birds occurring in forested habitats 
have narrow thermal niches relative to species in other land 
cover types (Srinivasan et al. 2019).

In line with our hypothesis, the probability of occupancy 
of several generalist bird species (n = 14) was positively 
associated with temperature seasonality. For example, the 
red-vented bulbul Pycnonotus cafer, purple sunbird Cinnyris 

Table 1. Species-specific associations with occupancy. The number of species that show significant positive/negative associations with occu-
pancy as a function of their habitat associations is shown here.

Predictor Habitat association Positive/negative association Number of species

Temperature seasonality Forest species Negative −18
Temperature seasonality Forest species Positive 4
Temperature seasonality Generalist species Negative −7
Temperature seasonality Generalist species Positive 14
Precipitation seasonality Forest species Negative −2
Precipitation seasonality Forest species Positive 6
Precipitation seasonality Generalist species Negative −5
Precipitation seasonality Generalist species Positive 8
Evergreen forests Forest species Negative 0
Evergreen forests Forest species Positive 8
Evergreen forests Generalist species Negative −4
Evergreen forests Generalist species Positive 3
Deciduous forests Forest species Negative 0
Deciduous forests Forest species Positive 2
Deciduous forests Generalist species Negative −2
Deciduous forests Generalist species Positive 0
Mixed/degraded forests Forest species Negative −1
Mixed/degraded forests Forest species Positive 0
Mixed/degraded forests Generalist species Negative 0
Mixed/degraded forests Generalist species Positive 1
Agriculture/settlements Forest species Negative −1
Agriculture/settlements Forest species Positive 0
Agriculture/settlements Generalist species Negative −2
Agriculture/settlements Generalist species Positive 2
Grasslands Forest species Negative −3
Grasslands Forest species Positive 0
Grasslands Generalist species Negative −3
Grasslands Generalist species Positive 0
Plantations Forest species Negative −1
Plantations Forest species Positive 1
Plantations Generalist species Negative −2
Plantations Generalist species Positive 7
Water bodies Forest species Negative 0
Water bodies Forest species Positive 2
Water bodies Generalist species Negative 0
Water bodies Generalist species Positive 3
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asiaticus and the spotted dove Streptopelia chinensis showed a 
positive association. Our result suggests that such generalist 
species occupy areas that show large variation in temperatures 
– including drier open habitats such as mixed/degraded forests 
and agricultural lands. In fact, temperatures across tropical 
agricultural lands have been shown to be 7.6°C higher than 
temperatures within tropical primary forests (Senior  et  al. 
2017). Generalist bird species that showed a positive associa-
tion likely possess broad thermal niches, relative to their for-
est counterparts. However, our study also reported a negative 
relationship with temperature seasonality for seven generalist 
bird species, including the red-whiskered bulbul Pycnonotus 
jocosus and the oriental-magpie robin Copsychus saularis. 
Future studies need to consider climate-land cover interac-
tions to explore patterns seen for generalist species.

The role of precipitation

The significant association with precipitation seasonality sug-
gests the importance of the ‘hygric niche’, which has been 
seldom explored empirically (Boyle  et  al. 2020). In other 

words, species’ occupancy is often governed by a range of pre-
cipitation regimes which vary in turn by land cover type and 
topographic complexity (Nowakowski  et  al. 2018). Several 
forest and generalist species showed a positive association 
with precipitation seasonality. Research from the Australian 
tropical rainforests suggests that precipitation seasonality 
was strongly associated with bird abundance (Williams and 
Middleton 2008). In addition, precipitation seasonality has 
been reported as a crucial factor influencing resource avail-
ability (e.g. insects) for bird populations (Loiselle and Blake 
1991). The positive association between precipitation season-
ality and species occupancy (for forest and generalist birds) 
reported in this study can be explained by the cascading effect 
of rainfall on food availability and, thereby survival of birds 
(Butt et al. 2015, Boyle et al. 2020). In our study, forest spe-
cies such as the southern hill myna Gracula indica and the 
crimson-backed sunbird Leptocoma minima, and generalist 
species such as the rose-ringed parakeet Psittacula krameri 
and the Indian white-eye Zosterops palpebrosus showed a posi-
tive association. On the other hand, we found that generalist 
species like the coppersmith barbet Psilopogon haemacephalus 

Figure 5. Probability of occupancy as a function of temperature seasonality. Predicted probability of occupancy curves as a function of 
temperature seasonality for four forest species are shown here. Temperature seasonality is negatively associated with the probability of occu-
pancy of several forest species including the asian fairy-bluebird Irena puella, the crimson-backed sunbird Leptocoma minima, the chestnut-
headed bee-eater Merops leschenaulti and the Malabar whistling-thrush Myophonus horsfieldii.
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and the red-vented bulbul Pycnonotus cafer were negatively 
associated with precipitation seasonality. Many of these gen-
eralist bird species that showed a negative association are 
associated with drier habitats across our study area. Similar 
results have been reported from the neotropics where bird 
species largely associated with open habitats tend to prefer 
drier climates (Frishkoff et al. 2016). The above result merits 
further exploration that tests the interaction between precipi-
tation seasonality and habitat structure and floristics in deter-
mining habitat use. With increasing variability in rainfall 
patterns, it remains to be seen whether forest, as well as gen-
eralist bird species, adapt to such changes in the near future. 
For instance, models have predicted reduced rainfall across 
regions in the Western Ghats as a result of future climatic 
changes (Rajendran et al. 2012).

Role of naturally occurring vegetation and 
landscape transformation

Apart from climate, certain land cover types are hypothesized 
to be crucial for many species, as they offer resources neces-
sary for survival, breeding and other activities (Sunarto et al. 
2012). For insectivorous birds in central Jamaica, the land-
scape matrix and habitat type were vital in determining 

occupancy (Kennedy  et  al. 2011). Our study suggests a 
positive relationship for several forest species across naturally 
occurring land cover types – evergreen and deciduous for-
ests. Few generalist species such as the Blyth’s reed warbler 
Acrocephalus dumetorum and grey wagtail Motacilla cinerea 
were positively associated with the proportion of evergreen 
forests. The above association can be attributed to the fact 
that the Blyth’s reed warbler and the grey wagtail have been 
reported from forest edges as well as plantations and agricul-
tural areas in the vicinity of evergreen forests. It is also likely 
that our minimum spatial scale of 2.5 km was coarse and 
resulted in sampling multiple land cover types.

As expected, several generalist bird species showed a positive 
association with human-modified land cover types. This associ-
ation highlights the role of habitat transformation. The south-
ern Western Ghats have undergone a drastic transformation 
in the last  decades, with the replacement of mid- and high-
elevation forests and grasslands with exotic trees and planta-
tions (Arasumani et al. 2018). In the Nilgiris alone, the area 
covered by exotic trees has almost doubled, from approx. 140 
km2 to 277 km2 in the 44-year period 1973–2017. Generalist 
birds such as the jungle myna Acridotheres fuscus and the red-
whiskered bulbul Pycnonotus jocosus were positively associated 
with the proportion of plantations. On the other hand, we did 

Figure 6. Predicted area of occurrence for four forest species. The probability of occupancy of the asian fairy-bluebird Irena puella, the 
crimson-backed sunbird Leptocoma minima and the chestnut-headed bee-eater Merops leschenaulti is higher across the western slopes and at 
mid-elevations across our study area. The Malabar whistling-thrush Myophonus horsfieldii has a higher probability of occupancy across mid-
elevations throughout the study area examined.
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see forest species like the Malabar whistling thrush Myophonus 
horsfieldii showing a positive association with the proportion 
of plantations, which could be an artifact of this species often 
being reported in not only forested areas but forest edges and 
plantations as well. In a complex matrix that is the Western 
Ghats, our results further lend support to the role of natu-
ral vegetation within these human-modified landscapes in 
sustaining biodiversity in the long term (Anand et  al. 2010, 
Ranganathan et al. 2010). For example, windbreaks, which are 
often thin slivers of natural vegetation present in tea planta-
tions in our study area, have been shown to possess similar 
bird species richness compared to adjacent primary forests 
(Sreekar et al. 2013). In a similar vein, data from the Anamalai 
hills suggests that native shade trees within tea plantations bol-
ster avian species richness almost two-fold compared to tea 
plantations without native shade trees (Raman  et  al. 2021). 
Furthermore, the type of human-modified land cover type 
matters too, and coffee, rubber and areca plantations across the 
Western Ghats have been shown to support more bird species 
than tea plantations (Sidhu et al. 2010, Karanth et al. 2016).

Caveats and conclusions

Our analysis was carried out using semi-structured data 
derived from a large citizen science project. The lack of 
experimental and sampling design of this study is a persistent 
criticism of citizen science research. For example, a large pro-
portion of checklists were reported within 200 m of a road, 
which are relatively more accessible (Fig. 3a). This pervasive 
spatial bias in sampling could impact results in ways that can-
not be corrected via spatio-temporal filtering of data. While 
citizen science observations are often seen as supplemen-
tary to (presumably) more rigorous, methodical sampling 
by trained observers, such sampling designs are often not 
logistically feasible at large spatial scales. In under-studied or 
under-sampled regions, citizen scientists and their observa-
tions are first-class data sources with significant exploratory 
and explanatory power (Devictor et al. 2010, Ellwood et al. 
2017, Robinson et al. 2020).

Recent evidence also suggests that a species’ response 
to environmental gradients and/or drivers such as land 
cover and climate will vary as a function of biological traits 
(McGill et al. 2006). Our study classified species as forest 
species or generalist species (Ali and Ripley 1983). Other 
traits might better explain associations between climatic and 
land cover predictors and species’ occupancy. For example, 
body mass is often considered an indicator of thermoregu-
lation, and has been shown to be strongly associated with 
thermal niches of species, particularly temperate species and 
high elevation tropical species (Barve et al. 2021). Similarly, 
functional traits such as trophic niches, that explain dietary 
preferences of a particular species are often associated 
with the use of a particular habitat (Pigot  et  al. 2020). 
Himalayan birds – which encounter a comparable, if wider, 
range of temperatures – have been shown to use forest and 
agriculture habitats to cope with resource scarcity in win-
ter, possibly indicating greater dietary generalization than 

previously thought (Elsen et al. 2018). Including functional 
traits is a promising avenue to better understand species’ 
response to environmental change across human-modified 
landscapes in the Western Ghats, and tropical mountains 
more generally.

Over 60% of mountainous landscapes across the planet 
are under tremendous anthropogenic pressures, and yet host 
some of the highest biodiversity in the world (La Sorte and 
Jetz 2010, Elsen et al. 2020). The southern Western Ghats is 
one such human-dominated mountainous landscape, where 
understanding the role of climatic and landscape predictors 
in structuring species occupancy can inform conservation. In 
this study, we show that species have differential responses 
to climate (temperature and precipitation) and natural and 
human-modified land cover types. If species need to adapt 
to environmental changes, they need to be able to track 
their suitable climatic and habitat niche space, which may 
only be possible through the creation of climate corridors 
(Freeman et al. 2018).
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